Collaborative Marine Ornamental Fish Propagation Efforts

Allan Marshall – The Florida Aquarium
Dr. Matt Wittenrich – University of Florida
Eric Cassiano – University of Florida
Industry relies on wild-caught specimens. Few bred at all. Largely opportunistic. Only few dozen commercially bred.
AZA initiative

Assess sustainability of current aquatic animal accession options

Establish plan to improve existing and potential options

Create a Sustainability Statement and Action Plan
Results

- Too many diverse species for a single solution
- Wild collection will remain the only viable option for many species (ensuring sustainable practices)
- Continue to develop captive breeding to reduce pressure on reef ecosystems
Rising Tide Conservation Initiative

- SeaWorld Parks and Entertainment (2009)
- Research facilities, industry partners, public display aquaria
- Create a platform that promotes the dissemination of information on marine tropical fish aquaculture
- Rising Tide stakeholder
 - Explore production protocols for target species
 - Transfer protocols to related species
Challenges For Breeding Marine Fishes

- General lack of research / knowledge
- Broodstock availability and performance
 - Spawning and egg quality
 - Nutritional requirements
- Incubation → hatching → first feeding
- Feeding environment / Live feeds
- Subsequent developmental stages
- Aquarium Resources
Challenges for Breeding Marine Fishes

- Brood Stock
Pelagic vs Demersal

- Of the ~60 species commercially raised, 58 are demersal spawners
- Incubating pelagic eggs
- Pelagic larvae care
Challenges for Breeding Marine Fishes

- Collecting Pelagic Eggs/Larvae
• Egg collectors in the aquarium for 18 hours
Egg cleaning and separation
Eggs filtered through window screen
Screened material collected into another mesh sieve
• Eggs and debris moved into 600ml beaker for separation
• Approximate settlement time is 10 minutes
Decant viable eggs into mesh sieve
• Eggs rinsed into a graduated cylinder or beaker for measurement
• Approximately 4,000 eggs per ml
• 120,000 eggs
Eggs are 600-800 micron diameter
Packing and shipment

- System water filtered through 1µm sock filter
- Oxygenated for 5 minutes with pure oxygen
• Eggs mixed into suspension
• Measure 1.5gal of water per bag
• Approx 2.5ml of eggs per bag
Bags are closed with no air
• Water parameters
• Egg/water volume/bag
Challenges for Breeding Marine Fishes

- Initial Foods
Diversity of Larval Form
Diversity of Newly Hatched Larvae

Amphiprion ocellaris

Chasmodes bosquianus

Abudefduf saxatilis

Meiacanthurus bundoon

Calloplesiops altivelis
Understanding larval form
• Understand what larvae have the ability to eat

• Different species / stages?
Find Out What They Eat
Culture What They Eat

- *Oithona colcarva*
Determine the Environmental Conditions That Elicit a Feeding Response

Histrio histrio 4 DPH

150 microns
Green Chromis, *Chromis viridis*

- Virginia Aquarium
 - Green Chromis (*Chromis viridis*)
 - ~100,000 eggs
- Larviculture to ~20 dph
- Bottleneck in survival ~8 dph
Porkfish, *Anisotremus virginicus*

- Sea World Orlando (SWOR)
- Initially fed wild zooplankton and live microalgae
- Commercially conducive early feeding regime
 - First feeding diet = rotifers / algae paste
 - *Artemia* at ~10 days post hatch; dph
 - Artificial feed at ~20 dph
- Metamorphosis at ~25 dph
- ‘First’ using cultured live feeds
- SWOR (eggs) → Industry ($) → SWOR (juveniles)
PORKFISH
Anisotremus virginicus
Palette Surgeon, *Paracanthurus hepatus*

- Columbus Zoo & Aquarium
Palette Surgeon, *Paracanthurus hepatus*
Koran Angelfish, *Pomocanthus semicirculatus*.

- Columbus Zoo & Aquarium
- First feeding 3 dph; wild zooplankton (<150 μm)
- Sparse; noticeably larger ~6 dph
- Vertical development ~8 dph
- Accept *Artemia* at ~12 dph
- Metamorphosis
 - 140 gallon tank = ~19 dph
 - 50 gallon tank = ~25 dph
- First time reared in captivity
Koran Angelfish
Pomacanthus semicirculatus

Mati Wittenrich • Eric Cassiano • Christine Creamer
UNIVERSITY OF FLORIDA
Unknown Pomacanthid
45 dph
Ternate Damsel, *Amblyglyphidodon ternatensis*

- Steinhart Aquarium (2 shipments)
- Demersal spawner
- Incubation = 7-8 days with aeration
- Four larvae hatched (~3 mm length)
- Feeding regime
 - *Live microalgae*
 - *Pseudodiaptomus pelagicus*
 - *Artemia* at ~10 dph
- Reach metamorphosis at ~18 dph
- Well suited for commercial production
Orbiculate Batfish, *Platax orbicularis*

- The Shedd Aquarium
Bluestripe Grunt, *Haemulon sciurus*

- The Florida Aquarium
- Bluestripe Grunt
- Bottleneck at ~25 dph
- Larviculture ~35 dph
- 26 dph = ~15 mm
Bluestripe Grunt
Haemulon sciurus

Matt Wittenrich • Eric Cassiano
UNIVERSITY OF FLORIDA
SEABREAM
Archosargus rhomboidealis

Matt Wittenrich • Eric Cassiano
UNIVERSITY OF FLORIDA
Next Steps for TAL

- DNA analysis of larvae and gut contents to confirm who is eating what.
- Provide important species for display.
- Provide species with conservation status.
- Transfer technology to commercial breeders.
Next Steps for Aquariums

- Involve more aquaria for egg collection
- Commitments from Columbus Zoo & Aquarium, Sea World and The Florida Aquarium to fund continuing collections.
- Exhibits and graphics
- Spawning observations
Born at The Aquarium

These fish started as eggs in our Coral Reef Exhibit. The microscopic eggs float to the top and are collected in a basket that skims the surface. When they hatch, the tiny fish are the size of this comma, and they need very, very tiny food.

Breeding fish in captivity reduces collection from the wild and helps conserve habitats such as coral reefs.

At the University of Florida Tropical Aquaculture Lab in nearby Ruskin FL, the hatchlings are fed just the right diet of plankton. When they get bigger, the young fish are brought back here for display.
A Rising Tide of Conservation Begins...

These porcupinefish and other tropical fishes aren’t easy to breed in aquariums— their tiny eggs are usually lost when water is filtered and cleaned. The Rising Tide project involves collecting fish eggs at public aquariums and raising them in specialized tanks to ensure their survival.

Goals of Rising Tide:
- Change the aquarium industry by breeding tropical species.
- Share knowledge with commercial growers and entire marine fish community.
- Diminish the impact on precious reef habitats.
- Ensure colorful and cool marine fishes will be seen by generations to come.

SeaWorld continues to connect families to the ocean and the fragile beauty of reefs—you can make a difference through everyday actions.

- Recycle
- Keep Waterways Clean
- Support Sustainable Seafood
- Learn More at: RisingTideConservation.org

Meet the Newest Rising Stars of Fish Conservation.

Fast, fun porcupinefish are named after the grunting, piglike sounds they create. Colorful reef species like these aren’t just cool, they’re vital links in the delicate food web we all rely on. But these fantastic fishes and their coral home face an ocean of challenges.

- Habitat Loss
- Warming Ocean Temperatures
- Pollution
- Over-Collecting

To help, SeaWorld, the University of Florida and other dedicated conservationists have teamed up to create the Rising Tide fish-breeding project.

RisingTideConservation.org